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     Abstract-The problem of surface tension driven magneto-

convection is investigated in a two layer system comprising an 

incompressible electrically conducting fluid saturated porous 

layer over which lies a layer of the same fluid in the presence 

of a vertical magnetic field.  The lower rigid surface of the 

porous layer and the upper free surface are considered to be 

insulating to temperature perturbations.  At the upper free 

surface, the surface tension effects depending on temperature 

are considered. At the interface, the normal and tangential 

components of velocity, heat and heat flux are assumed to be 

continuous.  The resulting eigenvalue problem is solved 

exactly and an analytical expression for the Thermal 

Marangoni Number is obtained.  The effect of variation of the  

physical parameters  Horizontal wave number,  Porous 

parameter, Chandrasekhar number, viscosity ratio and 

porosity on  the Thermal Marangoni Number which is the 

criteria for the onset  of Marangoni convection in the 

composite layer is investigated in detail. 

 

   Keywords: Marangoni Convection, Porous Parameter, 

Chandrasekhar Number, Porosity. 

 

                        I. INTRODUCTION 

 Magneto convection in an electrically conducting fluid 

has been studied extensively by many authors (Busse [1], 

Chandrasekhar [2], Rudraiah [10], Weiss [17], [18], 

Knobloch et al [6]). Rudraiah [11] have studied both 

linear and steady nonlinear magneto convection in a 

sparsely packed porous medium using Brinkman model 

with effective viscosity same as fluid viscosity, however 

the experiments show that the ratio of effective viscosity 

to fluid viscosity takes the value ranging from 0.1 to 10.0 

as given in Givler and Altobelli [5].  

Single component convection in composite layers is 

investigated by Many of the researchers started by 

Nield,[8] Rudraiah [12], Taslim and Narusawa [15],  

McKay [7], Chen [3].   I. S. Shiva kumara et. al [13]  

have investigated the onset of surface tension driven 

convection in a two layer system comprising an 

incompressible fluid saturated porous layer over which 

lies a layer of the same fluid.   The critical Marangoni 

number is obtained for insulating boundaries both by 

Regular Perturbation technique and also by exact method. 

They also have compared the results obtained by both the 

methods and found in agreement.    

Double diffusive convection in composite layers has 

wide applications in crystal growth and solidification of 

alloys. Inspite of its wide applications not much   work 

has been done in this area.   Chen and Chen [4] have 

considered the problem of onset of finger convection 

using BJ-slip condition at the interface.  The problem of 

double diffusive convection for a thermohaline system 

consisting of a horizontal fluid layer above a saturated 

porous bed has been investigated experimentally by 

Poulikakos and Kazmierczak [9]. Venkatachalappa et al 

[16] have investigated the double diffusive convection in 

composite layer conducive for hydrothermal growth of 

crystals with the lower boundary rigid and the upper 

boundary free with deformation.  Recently the double 

diffusive magneto convection in a composite layer 

bounded by rigid walls is investigated by Sumithra [14] 

by regular perturbation method is used to find the 

eigenvalue. Siddheshwar et al [19] have investigated the 

thermorheological effect on Rayleigh-Bernard and 

Marangoni Magneto convection in Newtonian liquid 

numerically for all possible boundary combinations such 

as rigid- rigid/free- free/rigid- free and isothermal/ 

adiabatic to know the influence of temperature dependent 

viscosity and externally applied magnetic field on the on 

set of convection by higher order Rayleigh-Ritz method. 

The problem under investigation  has many engineering 

applications like the moisture migration in thermal 

insulation and stored grain, underground spreading of 

chemical pollutants, waste and fertilizer migration in 

saturated soil and geothermal and  petroleum reservoirs. 

 

II. FORMULATION OF PROBLEM 

We consider a horizontal two - component, electrically 

conducting fluid saturated isotropic sparsely packed 

porous layer of thickness md underlying a two 

component fluid layer of thickness d with imposed 

magnetic field intensity 
0H  in the vertical z – direction. 

The lower surface of the porous layer is rigid and the 

upper surface of the fluid layer is free with the surface 

tension effects depending on temperature.  Both the 

boundaries are kept at different constant temperatures.  A 

Cartesian coordinate system is chosen with the origin at 

the interface between porous and fluid layers and the z – 

axis, vertically upwards.  The continuity, solenoidal 

property of the magnetic field, momentum energy, 

magnetic induction equations are,  

0q 


         
(1) 

0H  


          (2) 
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For the porous layer, 

0
m m

q  


                     (6) 
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
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(10)                                                              

Where the symbols in the above equations have the 

following meaning   , ,q u v w


 is the velocity vector, 

H


 is the magnetic field,  t  is the time,   is the fluid 

viscosity,
2

2

p
H

P p


    is the total pressure,
0  is the 

fluid density, 
p  is the magnetic permeability, 

 
 

0 p m

p f

C
A

C




    is the ratio of heat capacities, 

pC  is the 

specific heat, K  is the permeability of the porous 

medium, T is the temperature,   is the thermal 

diffusivity of the fluid,   
1

m

p


 

  is the magnetic 

viscosity,  is the electrical conductivity,   is the 

porosity, m
em





  is the effective magnetic viscosity 

and the subscripts m and f refer to the porous medium 

and the fluid respectively.The basic steady state is 

assumed to the quiescent and we consider the solution of 

the form, 

      0
, , , , , 0, 0,0, , ,

b b
u v w P T H P z T z H z  


     

(11) 

in the fluid layer and in the porous layer 

      , , , , 0,0,0, ,
m m m m m mb m mb m

u v w P T P z T z  

                              (12) 

Where the subscript „b‟ denotes the basic state.  The 

temperature distributions   ,bT z    ,mb mT z  are found to 

be  

 
 0

0

u

b

T T z
T z T

d


   in 0 z d   (13) 

 
 0

0

l m

mb m

m

T T z
T z T

d


   in 0 m mz d 

       

                                                                        
(14)  

Where 
0

m u m l

m m

d T dT
T

d d

 

 





    is the interface 

temperature In order to investigate the stability of the 

basic solution, infinitesimal disturbances are introduced 

in the form, 

      0
, , , 0, , ,

, , ,

b b
q P T H P z T z H z

q P H



  

  

  



                                                                

(15) 

And 

      0
, , , 0, , ,

, , ,

m m m mb m mb m m

m m m

q P T H P z T z H z

q P H



  

  

  



                                                                            

(16) 

Where the primed quantities are the perturbed ones over 

their equilibrium counterparts.  Now equations (15) and 

(16) are substituted into the equations (1) to (10) and are 

liberalized in the usual manner.  Next, the pressure term 

is eliminated from equation (3) and equation (8) by taking 

curl twice on these two equations and only the vertical 

component is retained.  The variables are then non-

dimensionalised using d ,
2

d


, 

d


, 

0 uT T  and 
0H   as the 

units of length, time velocity, temperature, and the 

magnetic field in the fluid layer and 
md ,

2

m

m

d


, m

md


, 

0lT T   as the corresponding characteristic quantities in 

the porous layer.  Note that the separate length scales are 

chosen for the two layers so that each layer is of unit 

depth..In this manner the detailed flow fields in both the 

fluid and porous layers can be clearly obtained for all the 
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depth ratios ˆ md
d

d
 .  The dimensionless equations for 

the perturbed variables are given by, 
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
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For the fluid layer Pr



  is the Prandtl number, 

2 2

0p

fm

H d
Q




  is the Chandrasekhar number,  mv

fm





  

is the diffusivity ratio.  For the porous layer, Pr m
m

m




   

is the Prandtl number, 2

2

m

K
Da

d
    is the Darcy 

number, ˆ m


  is the viscosity ratio,
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

 
   is the Chandrasekhar 

number em
mm

m





 ,    in the porous layer.  

We make the normal mode expansion and seek solutions 

for the dependent variables in the fluid and porous layers 

according to 

 

 
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and 
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With 2 2

2
0f a f    and 2 2

2
0

m m m m
f a f   , where a  

and 
ma  are the non-dimensional horizontal wave numbers, 

n  and 
mn   are the frequencies.  Since the dimensional 

horizontal wave numbers must be the same for the fluid 

and porous layers, we must have m

m

aa

d d
  and 

hence ˆ
ma da .Substituting equations (23) and (24) into 

the equations (17) to (22)   and denoting the differential 

operator 
z




  and 

mz




 by D  and

mD  respectively, an 

eigenvalue problem consisting of the following ordinary 

differential equations is obtained, 

In 0 1z  , 
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 (29) 
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                                  (30) 

It is known that the principle of exchange of instabilities 

holds for double diffusive magneto convection in both 

fluid and porous layers separately for certain choice of 

parameters.  Therefore, we assume that the principle of 

exchange of instabilities holds even for the composite 

layers.  In other words, it is assumed that the onset of 

convection is in the form of steady convection and 

accordingly we take 0mn n  .  And eliminating the 

magnetic field in equations (25) and (28) from equations 

(27) and (30) we get, in 0 1z   
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 

2
2 2 2D a W QD W                 (31)

      

 2 2 0D a W                   (32)  

In 1 0mz    

   2 2 2 2 2 2 2ˆ 1m m m m m m m mD a D a W Q D W     
 

     

                                       (33) 

 2 2 0m m m mD a W                   (34) 

Thus we note that, in total we have a 12th order ordinary 

differential equation and we need 12 boundary conditions 

to solve them. 

 

               III. BOUNDARY CONDITIONS 

The bottom boundary is assumed to be rigid and 

insulating to temperature so that at
m mz d   

0, 0, 0m m
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m m
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z z

 
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The upper boundary is assumed to be free, insulating 

temperature so the appropriate boundary conditions at 

z d     are, 
2
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At the interface (i.e., at 0, 0mz z   ), the normal 

component of velocity, tangential velocity, temperature, 

heat flux are continuous and respectively yield following 

Nield [8], 
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                              (36) 

We note that two more velocity conditions are required at 

0z  Since we have used the Darcy-Brinkman equations 

of motion for the flow through the porous medium, the 

physically feasible boundary conditions on velocity are 

the following, at 0z   and 0mz   
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The other appropriate velocity boundary condition at the 

interface 0, 0mz z   can be, 

22
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All the Twelve boundary conditions equations (35) to 

(38) are non-dimensionalised and are subjected to Normal 

mode expansion and are given by 
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(39) 

The equations (31) to (34) are to be solved with respect to 

the boundary conditions equation (39). 

 

                  IV. EXACT SOLUTION  

The solutions of the equations (31) and (33) are 

independent of  and 
m can be solved and expressions 

for W  and 
mW  can be obtained as, 
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determined using the velocity boundary conditions of 

equation (39)  and the expressions for ( )W z  and 

( )mW z
 are
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And now consider Heat equations (32) and (34), the 

expressions for 
  and 

m are obtained as,
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V. THERMAL MARANGONI NUMBER 

The expressions of (1)  and (1)W  are substituted in 

equation  
2

39  and an expression for Thermal 

Marangoni number M is obtained as 
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VI. RESULTS AND DISCUSSIONS 

The Thermal Marangoni number M obtained as a 

function of the parameters is drawn versus the depth ratio 

d̂  and the results are represented graphically showing the 

effects of the variation of one physical quantity, fixing the 

other parameters. The fixed values of the parameters 

are ˆ 1, 0.9T   , 0.1  , ˆ500, 2.5Q   . The 

effects of the Horizontal wave number ,a   the porous 

parameter , Chandrasekhar number ,Q   the 

viscosity ratio ̂ and the porosity  on the  Thermal 

Marangoni number M are obtained and portrayed in the 

figures 1 to 5 respectively. The effects of a , horizontal 

wave number on the Thermal Marangoni number M are 

shown in Fig. 1.   The graph has three converging curves.    

The line curve is for 1.1a  , the big dotted curve is for 

1.2 and the small dotted line curve is for 1.3. Since the 

curves are diverging, it indicates that for larger values of 

the depth ratio, the increase in the value of horizontal 

wave number a makes a drastic change in the values of 

the thermal Marangoni number M.  The increase in the 

values of horizontal wave number a , the Thermal 

Marangoni number M increases, so the increase in the 

value of horizontal wave number stabilizes the system. 

That is the Marangoni convection is delayed. 
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Fig.1. The effects of a , horizontal wave number on the 

Thermal Marangoni number M for 
ˆ500, 1.0, 2.5, 0.1Q        
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Fig.2. The effects of Porous parameter   on the Thermal 

Marangoni number M for 

ˆ500, 1.0, 2.5, 1Q a      

The effects of the porous parameter 
2

m

K

d
   is 

exhibited in the Fig.2. The graph has three diverging 

curves. The line curve is for 0.1  , the big dotted 

curve is for 0.2 and the small dotted line curve is for 0.3. 

Since the curves are diverging, it indicates that the 

increasing values of  porous parameter  will affect the 

onset of Marangoni convection only for larger values of 

the depth ratio ˆ md
d

d
 , that is for porous layer dominant 

composite systems. From the curves it is evident that for 

a fixed value of d̂ , increase in the value of   is to 

decrease the  value of the  thermal Marangoni number M  

i.e., to destabilize the system, so    the onset of surface 

tension driven  convection or Marangoni convection is  

faster, this destabilization may due the presence of 

magnetic field. In other words increasing the permeability 

of the porous matrix one can destabilize the fluid layer 

system in the presence of magnetic field. Figure 3 

exhibits the effects of the magnetic field on the onset of 

convection by the Chandrasekhar number 

2 2

0p

fm

H d
Q




  

. As the curves are diverging the effect of the magnetic 

field is very large for even a small change in the value of 

the depth ratio. Though the effect of magnetic field is 

stabilizing in single component, single layer convection 

problem, here for this set of values of the parameters 

taken,  it is showing dual effect of the Thermal 

Marangoni number  depending on the  values of depth 

ratio.  
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Fig.3. The effects of Chandrasekhar number Q  on the 

Thermal Marangoni number M 
for ˆ1.0, 2.5, 1, 0.1a       

The line curve is for 300Q  , the big dotted curve is for 

500 and the small dotted line curve is for 700. For values 

of depth ratio ˆ 1.5d  , for the fluid layer dominant 

systems, the increase in the value of Q decreases the 

thermal Marangoni number M that is to destabilize the 

system. Where as for values of ˆ 1.5d  , porous layer 

dominant systems, the increase in the value of Q 

increases the thermal Marangoni number M that is to 

stabilize the system, so the Marangoni convection or 

surface tension driven convection can be delayed.  
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Fig.4. The Effects Of Viscosity Ratio ̂  On The Thermal 

Marangoni Number M For 

ˆ1.0, 2.5, 1, 0.1a       

The effects of the viscosity ratio ˆ m


  which is the 

ratio of the effective viscosity of the porous matrix to the 

fluid viscosity are displayed in Fig. 4. The line curve is 

for ˆ 2.0  , the big dotted  curve is for 2.5 and the small 

dotted line curve is for 3.0.  The increasing values of 

viscosity ratio ̂  increases the value of the Thermal 

Marangoni number M i.e., to stabilize the system, so    the 

onset of surface driven magneto - convection is delayed. 

In other words when the effective viscosity of the porous 

medium 
m  is made larger than the fluid viscosity , the 

onset of the surface driven magneto - convection in the 

fluid layer can be delayed. In Fig. 5 the line curve is 

for 0.7  , the big dotted curve is for 0.8 and the small 

dotted line curve is for 1.0. Fig.5 depict that there is no 

effect for small values of the depth ratio  ˆ md
d

d
     and 

a little variation  in
 
 the curves for the region  ˆ 1.25d  ,  

The increase in the value of Porosity
 

 is to  slightly 

decrease the  value of the  thermal Marangoni number M  

i.e., to destabilize the system, so    the onset of surface 

driven magneto- convection can be made earlier even by 

increasing the void volume in the porous layer in the 

presence of the magnetic field, though the effect of 

magnetic field is stabilizing . 
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Fig.5. The effects of Porosity
 

 on the Thermal Marangoni 

number M for 
ˆ500, 2.5, 1, 0.1Q a      

  

VII. CONCLUSION 

 The  increase in the values of  Horizontal wave 

number „a‟ and Viscosity ratio ̂  is to increase  the 

thermal Marangoni number M  hence their effect is to 

delay the surface tension driven convection i.e., to 

stabilize the system. Whereas the increase in the values of 

the Porous parameter  and Porosity   decrease the 

Marangoni number M so the effect of these parameters is 

to destabilize the system. By choosing the appropriate 

values of the physical parameters, one can control the 

surface driven convection in the composite layer. 
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